LangChain
Integrate Eden AI with LangChain for building powerful LLM applications with access to 200+ models.Overview
LangChain is a framework for developing applications powered by language models. Eden AI integrates seamlessly with LangChain’sChatOpenAI class, giving you access to multiple providers through a single interface.
Installation
Install LangChain and required dependencies:Quick Start (Python)
Use Eden AI with LangChain’s OpenAI integration:Quick Start (TypeScript)
Available Models
Access any model from Eden AI:Streaming Responses
Handle streaming for real-time responses:Prompt Templates
Use LangChain’s prompt templates:Chains
Build complex workflows with chains:RAG (Retrieval-Augmented Generation)
Build RAG applications with vector stores:Agents
Create autonomous agents:Conversational Memory
Add memory to maintain context:Function Calling (Tools)
Use function calling for structured outputs:Output Parsing
Parse structured outputs:Multi-Provider Comparison
Compare responses from different providers:Environment Variables
Store credentials securely:Best Practices
1. Choose the Right Model
Select models based on your use case:- Complex reasoning:
anthropic/claude-3-5-sonnet-20241022 - Fast responses:
openai/gpt-3.5-turbo - Cost-effective:
anthropic/claude-3-haiku-20240307
2. Use Streaming
Enable streaming for better UX:3. Implement Error Handling
Wrap API calls in try-except blocks:4. Cache Results
Use LangChain’s caching to avoid redundant API calls:Next Steps
- LlamaIndex Integration - Another powerful RAG framework
- Python SDK - Direct SDK usage
- API Reference - Complete API documentation
- RAG Tutorial - Build a RAG app