Skip to main content

Provider Comparison for Media Support

Compare multimodal capabilities across different LLM providers.

Overview

This guide helps you choose the right provider for your multimodal use cases by comparing:
  • Image format support
  • File type compatibility
  • Size limits
  • Processing speed
  • Accuracy and quality
  • Cost effectiveness
  • Special features

Quick Comparison Matrix

Image Support

ProviderModelsJPEGPNGWebPGIFMax SizeBase64URLsUpload
OpenAIgpt-4o, gpt-4-turbo20 MB
Anthropicclaude-3-opus, claude-3-5-sonnet5 MB
Googlegemini-1.5-pro, gemini-1.5-flash20 MB
Mistralpixtral-12b-10 MB

Document Support

ProviderModelsPDFDOCXTXTMax SizeMax PagesBest For
OpenAIgpt-4o, gpt-4-turbo512 MB~1000Structured extraction
Anthropicclaude-3-opus, claude-3-5-sonnet10 MB~200Deep analysis
Googlegemini-1.5-pro, gemini-1.5-flash2 GB~10000Large documents
Mistralpixtral-12b----Text only

Detailed Provider Profiles

OpenAI

Models:
  • openai/gpt-4o (Recommended for multimodal)
  • openai/gpt-4-turbo
Strengths:
  • Fast processing (~1-3s per image)
  • Excellent general-purpose vision
  • Strong multi-image support (up to 10 images)
  • Reliable OCR and text extraction
  • Good object detection
  • Large file support (512 MB for documents)
Limitations:
  • Image size limit: 20 MB
  • May lack depth on complex reasoning tasks
  • Higher cost for vision tasks
Best Use Cases:
  • Real-time image analysis
  • Multi-image comparisons
  • Screenshot debugging
  • General image understanding
  • Large document processing
Pricing (Approximate):
  • Images: ~$0.0065 per image (1024×1024)
  • Text: 0.01per1Ktokens(input),0.01 per 1K tokens (input), 0.03 per 1K tokens (output)
Example:
payload = {
    "model": "openai/gpt-4o",
    "messages": [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Analyze this image"},
                {
                    "type": "image_url",
                    "image_url": {"url": "https://example.com/image.jpg"}
                }
            ]
        }
    ],
    "stream": True,
    "max_tokens": 500
}

Anthropic (Claude 3)

Models:
  • anthropic/claude-3-5-sonnet-20241022 (Recommended)
  • anthropic/claude-3-opus-20240229 (Highest quality)
  • anthropic/claude-3-sonnet-20240229
Strengths:
  • Superior reasoning about visual content
  • Excellent for document analysis
  • Strong at complex visual tasks
  • Detailed, thoughtful responses
  • Great for academic/research content
  • Multi-language support (100+ languages)
  • Better at nuanced interpretation
Limitations:
  • Image size limit: 5 MB (smaller than competitors)
  • Document size limit: 10 MB
  • Slightly slower processing
  • Higher cost for Opus model
Best Use Cases:
  • Legal document review
  • Academic paper analysis
  • Complex reasoning tasks
  • Detailed image interpretation
  • Multi-language documents
  • Chart and diagram analysis
Pricing (Approximate):
  • Sonnet: $0.003 per image + text tokens
  • Opus: $0.015 per image + text tokens
Example:
payload = {
    "model": "anthropic/claude-3-5-sonnet-20241022",
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Provide detailed analysis of this chart with insights"
                },
                {
                    "type": "image_url",
                    "image_url": {"url": "https://example.com/chart.png"}
                }
            ]
        }
    ],
    "stream": True,
    "temperature": 0.3
}

Google (Gemini 1.5)

Models:
  • google/gemini-1.5-pro (Best quality)
  • google/gemini-1.5-flash (Best value)
Strengths:
  • Massive context window (up to 2 million tokens)
  • Can handle very large documents (2GB+)
  • Fast processing (Flash variant)
  • Excellent multilingual support (100+ languages)
  • Strong video frame analysis
  • Best price/performance (Flash)
  • Can process multiple large PDFs simultaneously
Limitations:
  • May be less detailed on complex reasoning
  • Beta features may have restrictions
Best Use Cases:
  • Large document processing (100+ page PDFs)
  • Multi-document analysis
  • Video frame extraction and analysis
  • High-volume applications
  • Cost-sensitive projects
  • Research with large datasets
Pricing (Approximate):
  • Flash: Very low cost, ~$0.001 per image
  • Pro: Medium cost, ~$0.004 per image
Example:
# Process a 200-page PDF
payload = {
    "model": "google/gemini-1.5-pro",
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Summarize this entire document and extract key findings"
                },
                {
                    "type": "file",
                    "file": {"file_id": "large_document_uuid"}
                }
            ]
        }
    ],
    "stream": True,
    "max_tokens": 2000
}

Mistral

Models:
  • mistral/pixtral-12b
Strengths:
  • European data residency
  • Privacy-focused
  • Good price/performance
  • Fast processing
  • GDPR compliant
  • Lower latency in Europe
Limitations:
  • No document (PDF/DOCX) support
  • Only text and image inputs
  • Smaller model (12B parameters)
  • Limited advanced features
Best Use Cases:
  • European compliance requirements
  • Privacy-sensitive applications
  • Cost-effective image analysis
  • Basic vision tasks
  • Text and image combination
Pricing (Approximate):
  • Low cost, competitive with Flash
Example:
payload = {
    "model": "mistral/pixtral-12b",
    "messages": [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What objects are in this image?"},
                {
                    "type": "image_url",
                    "image_url": {"url": "https://example.com/photo.jpg"}
                }
            ]
        }
    ],
    "stream": True
}

Use Case Recommendations

Real-Time Image Analysis

Best Choice: OpenAI GPT-4o
  • Fastest processing
  • Reliable results
  • Good balance of speed and quality
Best Choice: Anthropic Claude 3 Opus
  • Superior reasoning
  • Detailed analysis
  • Excellent for complex documents

Large PDF Processing (100+ pages)

Best Choice: Google Gemini 1.5 Pro
  • Massive context window
  • Can handle 2GB+ files
  • Cost-effective for large docs

Multi-Document Analysis

Best Choice: Google Gemini 1.5 Pro
  • Best context window
  • Can process multiple files
  • Maintains context across documents

Screenshot Debugging

Best Choice: OpenAI GPT-4o
  • Fast turnaround
  • Good at UI understanding
  • Strong text extraction

Chart and Graph Analysis

Best Choice: Anthropic Claude 3.5 Sonnet
  • Best reasoning
  • Detailed insights
  • Accurate data interpretation

High-Volume Processing

Best Choice: Google Gemini 1.5 Flash
  • Lowest cost
  • Fast processing
  • Good quality for price

Privacy-Sensitive Applications

Best Choice: Mistral Pixtral
  • European data residency
  • GDPR compliant
  • Privacy-focused

Invoice/Receipt Extraction

Best Choice: OpenAI GPT-4o
  • Fast and accurate
  • Good structured extraction
  • Reliable OCR

Academic Paper Analysis

Best Choice: Anthropic Claude 3 Opus
  • Deep understanding
  • Detailed analysis
  • Good with technical content

Feature Comparison

Multi-Image Support

ProviderMax ImagesPerformanceBest For
OpenAI10+ExcellentComparisons, sequences
Anthropic20+Very GoodAnalysis, documentation
Google50+ExcellentLarge collections
MistralMultipleGoodBasic comparisons

Language Support

ProviderLanguagesMultilingual Quality
OpenAI50+Very Good
Anthropic100+Excellent
Google100+Excellent
Mistral50+Good

OCR Accuracy

ProviderHandwritingPrinted TextComplex Layouts
OpenAIGoodExcellentVery Good
AnthropicVery GoodExcellentExcellent
GoogleVery GoodExcellentVery Good
MistralGoodGoodGood

Cost Optimization Strategies

Choose Based on Task Complexity

Simple tasks (object detection, basic OCR):
# Use Gemini Flash or Mistral
"model": "google/gemini-1.5-flash"  # Cheapest
Medium complexity (chart analysis, multi-image):
# Use GPT-4o or Claude Sonnet
"model": "openai/gpt-4o"  # Balanced
Complex reasoning (legal docs, deep analysis):
# Use Claude Opus
"model": "anthropic/claude-3-opus-20240229"  # Best quality

Optimize Input Size

from PIL import Image
import io

def optimize_image(image_path, max_size_mb=5):
    """Resize image to fit under size limit."""
    img = Image.open(image_path)

    # Calculate target size
    current_size = os.path.getsize(image_path) / (1024 * 1024)
    if current_size <= max_size_mb:
        return image_path

    # Reduce quality
    output = io.BytesIO()
    quality = int(85 * (max_size_mb / current_size))
    img.save(output, format='JPEG', quality=quality, optimize=True)

    return output.getvalue()

Batch Processing

Process multiple items in fewer requests:
# Instead of multiple requests
# Send all images in one request (if provider supports)

payload = {
    "model": "google/gemini-1.5-pro",
    "messages": [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Analyze all these images"},
            ] + [
                {"type": "image_url", "image_url": {"url": url}}
                for url in image_urls
            ]
        }
    ],
    "stream": True
}

Performance Benchmarks

Average Response Times (Image Analysis)

ProviderModelSmall Image (1MB)Large Image (10MB)
OpenAIgpt-4o~1.5s~2.5s
Anthropicclaude-3-5-sonnet~2.0s~3.5s
Googlegemini-1.5-flash~1.0s~2.0s
Googlegemini-1.5-pro~2.0s~3.0s
Mistralpixtral-12b~1.5s~2.5s

Document Processing (PDF)

ProviderModel10-page PDF100-page PDF
OpenAIgpt-4o~5s~30s
Anthropicclaude-3-opus~8sNot recommended
Googlegemini-1.5-pro~6s~45s
Times are approximate and vary based on content complexity and network conditions.

Choosing the Right Provider

Decision Tree

Does your use case involve:

├─ Large documents (100+ pages)?
│  └─ Use: Google Gemini 1.5 Pro

├─ Privacy/GDPR requirements?
│  └─ Use: Mistral Pixtral

├─ Complex reasoning needed?
│  ├─ Legal/academic?
│  │  └─ Use: Anthropic Claude 3 Opus
│  └─ General analysis?
│     └─ Use: Anthropic Claude 3.5 Sonnet

├─ High-volume/cost-sensitive?
│  └─ Use: Google Gemini 1.5 Flash

└─ General purpose, fast?
   └─ Use: OpenAI GPT-4o

Provider Availability

Check current provider status:
import requests

def check_provider_availability():
    """Check which providers are currently available."""
    url = "https://api.edenai.run/v3/llm/models"
    headers = {"Authorization": "Bearer YOUR_API_KEY"}

    response = requests.get(url, headers=headers)
    models = response.json()

    multimodal_models = [
        model for model in models.get("data", [])
        if any(cap in model.get("capabilities", [])
               for cap in ["vision", "image", "file"])
    ]

    return multimodal_models

# Usage
available = check_provider_availability()
for model in available:
    print(f"{model['id']}: {model.get('capabilities', [])}")

Next Steps